Involvement of CaM kinase II in the impairment of endothelial function and eNOS activity in aortas of Type 2 diabetic rats.

نویسندگان

  • Tsuneo Kobayashi
  • Shingo Nemoto
  • Keiko Ishida
  • Kumiko Taguchi
  • Takayuki Matsumoto
  • Katsuo Kamata
چکیده

In the present sutdy, we have examined the relationship between the CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) pathway and endothelial dysfunction in aortas from GK (Goto-Kakizaki) Type 2 diabetic rats. The ACh (acetylcholine)-induced relaxation and NO production were each attenuated in diabetic aortas (compared with those from age-matched control rats). ACh-stimulated Ser(1177)-eNOS (endothelial NO synthase) phosphorylation was significantly decreased in diabetic aortas (compared with their controls). ACh markedly increased the CaMKII phosphorylation level within endothelial cells only in control aortas (as assessed by immunohistochemistry and Western blotting). ACh-stimulated Thr(286)-CaMKII phosphorylation within endothelial cells was significantly decreased in diabetic aortas (compared with their controls). The ACh-induced relaxations, NO production, eNOS phosphorylation, and CaMKII phosphorylation were inhibited by KN93 and/or by lavendustin C (inhibitors of CaMKII) in control aortas, but not in diabetic ones. Pre-incubation of aortic strips with a PP (protein phosphatase)-1 inhibitor, PPI2 (protein phosphatase inhibitor 2), or with a PP2A inhibitor, CA (cantharidic acid), corrected the above abnormalities in diabetic aortas. The expression of PP2A type A subunit was increased in diabetic aortas. The ACh-stimulated Thr(320)-phosphorylation level of PP1α was lower in diabetic aortas than in their controls, but the total PP1α protein level was not different. These results suggest that the aortic relaxation responses, NO production, and eNOS activity mediated by CaMKII phosphorylation are decreased in this Type 2 diabetic model, and that these impairments of CaMKII signalling may be, at least in part, due to enhancements of PP1α activity and PP2A expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Losartan improves aortic endothelium-dependent relaxation via proline-rich tyrosine kinase 2/Src/Akt pathway in type 2 diabetic Goto-Kakizaki rats.

In diabetic states, endothelial dysfunction is related to vascular complications. We hypothesized that insulin-induced relaxation and the associated proline-rich tyrosine kinase 2 (Pyk2)/Src/Akt pathway would be abnormal in aortas from the Goto-Kakizaki (GK) type 2 diabetic rat, which exhibits hyperglycemia/insulin resistance, and that losartan treatment of such rats (25 mg·kg(-1)·day(-1) for 2...

متن کامل

Association of endothelial nitric oxide synthase gene G894T polymorphism with type two diabetes and diabetic nephropathy

Background: Nitric oxide (NO) produced by endothelial NO synthase (eNOS) mediates a large range of processes, and abnormality in the production of NO has been implicated in diabetic complications including diabetic nephropathy (DN). G894T polymorphism in the eNOS gene has been shown to decreased activity the NO levels of plasma. The association between eNOS Glu298Asp gene polymorphism and DN ri...

متن کامل

CaM Kinase II-dependent pathophysiological signalling in endothelial cells.

Calcium/calmodulin-dependent protein kinase II (CaM Kinase II) is a known modulator of cardiac pathophysiology. The present review uniquely focuses on novel CaM Kinase II-mediated endothelial cell signalling which, under pathophysiological conditions, may indirectly modulate cardiac functions via alterations in endothelial or endocardial responses. CaM Kinase II has four different isoforms and ...

متن کامل

Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice.

Angiotensin II (Ang II) levels are increased in patients with diabetes, but mechanisms underlying its contribution to diabetic vascular diseases are incompletely understood. We recently reported that in aortic endothelial cells, Ang II induces endothelial nitric oxide synthase (eNOS) uncoupling to produce superoxide (O(2)*(-)) rather than nitric oxide (NO*), upon loss of the tetrahydrobiopterin...

متن کامل

مطالعه ژن کاندیدا در رتینوپاتی دیابتی: ژن eNOS

Background: Due to homeostatic and regulatory potentials of nitric oxide (NO) in vascular physiology, regulatory systems that determine NO bio-synthesis and bioavailability have been the subject of extensive research in molecular medicine. In the field of vascular system pathophysiology, endothelial nitric oxide synthase (eNOS) which is the major producer and regulator of NO in vascular tissues...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical science

دوره 123 6  شماره 

صفحات  -

تاریخ انتشار 2012